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Third-generation synchrotron sources generate strong X-ray

beams. The beam's interaction with biomaterials gives rise to

concerns related to thermal damage and radiation damage. Of

the two issues, the thermal interaction is conducive to rigorous

analysis from ®rst principles, although this has not been

performed to date in a comprehensive manner. In this study,

the interaction of the X-ray beam emanating from a third-

generation synchrotron with a typical frozen biocrystal is

theoretically studied, focusing speci®cally on the resulting

unsteady (time-dependent) and steady heat-transfer

phenomena. A unique regime map is developed to explain

and to identify, on the basis of Fourier and Biot numbers as

governing parameters, the applicable mathematical models

that predict the subsequent thermal behavior. Depending on

the values of these parameters, some simpli®ed but realistic

`generic' solutions are generated that are suitable for that

particular domain of applicability. Classical heat-transfer

theory was used to describe the third-generation X-ray beam

and biomaterial thermal interaction. Besides the generalized

approach presented, numerous illustrative cases were solved

and the resulting temperature levels are explicitly presented.

Overall, the resulting thermal behavior of the system, i.e. peak

and local temperature distribution, during both early transient

development and for sustained long-time steady-state condi-

tions, depends on a number of factors including the amount of

energy absorbed, convective heat-transfer ®lm coef®cient and

gas temperature, the sample size and shape, and the

thermophysical properties of the sample and cooling gas.

Results of the analysis revealed the strong in¯uence that

convection has on the transient and ®nal steady-state

temperature of the sample and the impact of internal heat

conduction. The characteristic timescales of the important and

dominant thermal processes with respect to the two types of

thermal models are clearly identi®ed.
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1. Introduction

Damage to biological specimens from synchrotron X-ray

beams has been a subject of research for the past 20 years or

so. Both thermal and radiation damage scenarios have been

considered. The thermal problem stems from the considera-

tion of direct energy deposition in the specimen as a portion or

all of the beam is absorbed in the material. The radiation

damage is thought to stem from the ionizing aspect of the

X-ray beams. By consensus, the radiation damage occurs in

two phases (Blake & Phillips, 1962; Gonzalez & Nave, 1994;

Nave, 1995). In the primary phase, energetic photons from the

beam interact with the molecular structure of the specimen.



research papers

70 Kuzay et al. � X-ray beam/biomaterial thermal interactions Acta Cryst. (2001). D57, 69±81

The energy of interaction causes increased thermal vibration

of the molecules and can cause breakage of atomic bonds in

the molecule thus creating `free radicals'. The deposited

energy drives these radicals from the primary site into the

specimen causing further damage to the structure as a

secondary effect. Such effects in the form of radiation damage

have a much stronger impact on soft condensed matter, such

as biological systems, in which thermodynamic effects, free-

radical formation and migration can be easily induced. In

addition, most biological specimens contain water. The

radiolytic effects arising from the destruction of water mole-

cules in the specimen by intense X-rays are profound.

While a systematic general theory on the radiation damage

to biosamples does not exist, it has been experimentally well

established that cryogenic cooling of the biosamples to about

100 K or so can at least mitigate the damage for most studies in

second- and third-generation synchrotron X-ray beams (Hope

et al., 1989; Garman & Schneider, 1997; Garman, 1999).

Biosamples in such experiments are usually soaked in a

cryoprotectant prior to cryocooling so that the water is not

converted to ice hence damaging the sample during the

accompanying dilation. The water is thus maintained in a

`supercooled' vitri®ed state with no volumetric change (Teng,

1990; Lock, 1990). From this broad phenomenological

discussion of the damage issue, the thermal and radiation

damage are clearly linked, at least in the primary effect phase

of the beam/material interaction. It should also be noted that

the thermal effect can be much more easily theoretically

modeled. The main purpose of this paper is to model such

thermal transport for biosamples for the third-generation

synchrotron beams.

The authors are unaware of a clear and complete thermal

analysis of this problem, which is surprising since the problem

is of such great interest to macromolecular crystallographers

and moreover the solution methodology is straightforward. To

date, the only thermal treatment we have seen in the literature

that deals with the problem of this type is the adiabatic

thermal model (Helliwell, 1992), which has been used mainly

only to provide a rough estimate of the sample's maximum

temperature rise (An®nrud, 1999; Srajer et al., 1996; Ren et al.,

1999). In the present study, we thermally analyze the given

problem in a fairly rigorous but as simple a manner as possible

employing the principles of classical heat-transfer theory and

present the information to synchrotron users in an organized

manner. To this end, we will ®rst broadly classify and cate-

gorize the two different `thermal model types' and identify

their range of validity via the help of a novel heat-transfer

`thermal regime' map. We then analyze in detail two speci®c

test problems (i.e. thin and thick samples) to help illustrate the

thermophysics while providing some `real and useful'

numbers.

2. System of interest

The biosample treated here is typical of the biocrystals used in

cryocooled crystallography studies: namely, the crycooled

sample is held in a twisted ®ber loop and is subjected to an

oncoming X-ray beam while being cooled convectively via an

annular nitrogen-gas stream from a cryostat, as shown in Fig. 1.

Given this con®guration, the biocrystal is internally heated as

the energy from the X-ray beam is absorbed and is externally

cooled from the front and rear surfaces by convection to the

cold N2 gas stream. The target area of the beam is assumed to

be larger than the maximum lateral dimension of the crystal,

thus allowing the one-dimensional plane layer simpli®cation

shown (assuming negligible cooling to the base pin through

the ®ber). Both thin and thick crystals are considered, as the

formalism in the theoretical modeling is different for these two

cases. The thin crystal can be treated as spatially uniform as a

pure `lumped model'. Hence, the resulting temperature in the

sample is a simple time function. The thick crystals'

temperature will, on the other hand, manifest both spatial and

temporal variation, i.e. a `distributed model'.

The temperature response (in time and space) of the sample

can be calculated readily. Classical heat-transfer theory holds

without question since the temporal and spatial dimensions of

the X-ray beam (even that emanating from a

third-generation synchrotron source) are much

larger than the internal energy transport carriers,

i.e. electrons and phonons, of the biomatter itself.

Furthermore, note that in this analysis the exact

detailed pulse-like structure of the X-ray beam

arising from the different loading scheme of the

synchrotron storage ring can also be ignored and

effectively replaced with a constant appropriately

`time-averaged' power of the absorbed X-ray

beam, i.e. a time-independent thermal input

source is used in the thermal models. Note that

this approximation is valid since the timescales of

thermal diffusion and convection/thermal storage

combination, ranging from milliseconds to

seconds, is so much longer than the pulse width

and pulse spacing of the X-ray beam, nano-

seconds to microseconds, found in typical third-

generation sources.
Figure 1
Biocrystal geometry modeled as a one-dimensional plane layer.



3. Regime map to identify applicable mathematical
model

Before beginning the thermal calculation for the problem at

hand, one must decide on the appropriate mathematical

formulation to use. Problems in transient heat transfer can be

classi®ed as falling into two main categories: `lumped' or

`distributed'. In the lumped system, the internal temperature

gradients in the body are assumed to be negligible and hence

the temperature within the whole body is approximated by a

single temperature that changes with time T(t). In contrast, the

temperature in a distributed system is non-uniform in space

and varies in time and position T(x, t). Nomenclature is given

in Table 1.

Clearly, the distributed model represents the more realistic

heat-transfer behavior, but the lumped-model formulation is

signi®cantly easier to solve, leading to an ordinary differential

equation versus a partial differential equation. It has been

shown (Bejan, 1993) that in many cases the lumped-model

simpli®cation is often a very good approximation and is

reasonably valid under certain conditions. These conditions

are best expressed in terms of two dimensionless parameters,

namely the Biot and Fourier numbers, such that

for Bi < 0:02 and Fo > 0:02

the lumped model is valid;
�1�

where

Bi � hL=k � Rcond=Rconv � �L=kA�=�1=hA� �2�
and

Fo � t=td � t=�L2=�� � t�=L2: �3�
This limited range of applicability (1) where the lumped-

model formulation holds is graphically depicted in the unique

thermal regime map of Fig. 2 by the shaded area shown in the

Bi/Fo plane, where the horizontal and vertical coordinates are

Fo and Bi, respectively.

Physically, the Bi number (2) represents the ratio of the

internal heat-conduction resistance to the external convection

resistance. Hence, a very large value of the Biot number

(Bi >> 1) implies that internal thermal conduction is indeed

very important in controlling the rate of heat transfer and

therefore signi®cant internal temperature variations will exist

within the body. On the other hand, a very small value (Bi << 1)

implies that the dominant thermal resistance is the external

convection. This situation then will result in a relatively large

temperature difference between the surface of the body and

the cooling ¯uid compared with the internal temperature

differences within the body itself, i.e. (Tsÿ Tg) >> (Tmaxÿ Ts).

In other words, for problems possessing small Bi numbers the

temperature differences inside the body are negligible

compared with the outside temperature differences between

the body and the cooling stream and hence will appear

`spatially uniform' in temperature.

The other coordinate, the Fourier number (3) can be

regarded as dimensionless time or, preferably, the actual time

normalized by the characteristic time for pure conduction

td = L2/�. Unlike the Bi number, which has a ®xed value for a

given experiment, the value of the Fo number will change

during the heating process from a small number at an early

time (Fo << 1) to a large value (Fo >> 1) at very late times (i.e.
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Table 1
Nomenclature.

A Surface area
Bi Biot modulus
BC Boundary conditions
c Speci®c heat
Fo Fourier modulus
GE Governing equation
h Convective heat-transfer ®lm coef®cient
IC Initial condition
k Thermal conductivity
L Length (thickness of sample)
m Mass
_Q Total energy
q0 0 Incident intensity of X-ray beam
q0 0 0 Volumetric internal heat generation
R Thermal resistance
T Temperature
t Time
V Volume
x Coordinate along beam direction

Subscripts/superscripts
* Non-dimensional quantity
att Attenuation
cond Conduction
conv Convection
i Initial condition
sys System
1 Ambient, coolant
ss Steady-state value
s Surface
d Diffusion time

Greek letters
� Thermal diffusivity
� Slope (Fig. 10)
� Absorption depth
� Eigenvalue
� Pulse length
� Non-dimensional x
� Density
� Non-dimensional temperature

Figure 2
Thermal regime map, as a function of characteristic parameters, showing
applicable regions of `lumped' and `distributed system' models.



research papers

72 Kuzay et al. � X-ray beam/biomaterial thermal interactions Acta Cryst. (2001). D57, 69±81

traversing a horizontal line as the experiment proceeds). In an

order-of-magnitude sense, the value of Fo = 1 denotes the

system's characteristic (dimensionless) response time for pure

thermal diffusion.

Hence, we see that the heat-transfer `thermal regime map'

(Fig. 2) serves two purposes: (i) it is used to show which model

type the problem falls into once the actual value of the Bi is

calculated for the given problem and (ii) it can be used to track

and mark the transient evolution of the heat-transfer

phenomenon, starting from the initial heating of the sample

(Fo = 0) and continuing in time until the experiment ends.

Relative to the internal heat diffusion time scale of the sample

td, the process is divided into the `very early' time (Fo << 1) in

the heating process, before diffusion has adequate time to act,

to the `very late' time (Fo >> 1); that is, after suf®ciently large

time has passed and internal heat diffusion is complete.

Diffusion in the intermediate time range (0.02 < Fo < 1) leaves

its signature varying in degree from having a small input to a

very large impact.

Quick inspection of the thermal regime map in Fig. 2 shows

that all problems, regardless of the value of the Biot number,

initially behave as distributed systems for early times, Fo < 0.02,

because of the ®nite time it takes for thermal diffusion to take

place. Only after the dimensionless time increases beyond

Fo > 0.02 will any change in the wall temperature be sensed

throughout the body. (In fact, for Fo < 0.02 the body actually

behaves as though it was a semi-in®nite solid, i.e. the center

being totally unaware of any thermal changes occurring at the

outer walls.) Thereafter, for times greater than Fo > 0.02 the

Biot number serves to discern if the bulk of the temperature

difference is then experienced internally in the body

(requiring distributed-model formulation) or externally

(where the lumped-model approach can give reasonable

values).

As time increases during the heating process, we expect the

temperature of the body to eventually stabilize and ultimately

reach thermal equilibrium with the external cooling ¯uid. The

time required to achieve steady-state condition is also indi-

cated on the thermal regime map. This is shown in Fig. 2 in

terms of the amount of (dimensionless) time the process takes

to cross the curved line (i.e. the solid line labeled as SS, steady

state, shown traversing the ®gure from the very top center to

the bottom right quadrant). Note that some discussion is

required in order to fully explain how the exact position of the

SS curved line was determined, but suf®ce it to say that it has

been precisely located on this ®gure using classical heat-

transfer theory. (Further details are provided in Appendix A

for the interested reader.)

With the background material presented above, we are now

in a position to thermally analyze the two speci®c test

problems: speci®cally, a 100 mm thick cryocooled biocrystal

and a 1000 mm thick air-cooled biocrystal. These `thin' and

`thick' example problems will be thoroughly investigated in

detail in the following section and are indicated in the thermal

regime map by solid symbols, and are labeled as Case 1 and

Case 2, respectively. In particular, from the thermal regime

map one should ®rst note that these two different test

experiments are best described and analyzed by invoking the

two different thermal models. The thin-sample case may be

approximated as a lumped system, but the thick-sample

problem must be solved as a distributed system. Secondly, the

thermal regime map shows that signi®cant internal thermal

diffusion throughout the body (i.e. Fo = 1) takes just milli-

seconds in the thin-sample experiment but is of the order of

seconds for the thick-sample case. Finally, we see from Fig. 2

that both test cases eventually reach steady state (as the

dimensionless time increase from left to right and crosses the

curved SS criteria line), but that this occurs very fast (in <10 s)

for the thin-sample problem but takes substantially longer

(�60 s) for the thick sample. The detailed results of the

thermal analyses that follow will be mostly reported in

dimensional quantities but will often be cross-referenced and

discussed in dimensionless terms to explain better the under-

lying thermophysics.

4. Lumped-model solutions

The resulting thermal behavior of the thin (L = 100 mm)

cryocooled biocrystal is shown in Fig. 3. For h =

100 W mÿ2 Kÿ1 (a reasonable estimate for the convective

®lm coef®cient for laminar gas-jet cooling) and taking

k = 5.0 W mÿ1 Kÿ1 (thermal conductivity of vitri®ed ice), the

Biot number therefore becomes Bi = 0.001 (based on the

characteristic half thickness Lc = L/2). For such a small Biot

number the lumped model is valid (equation 1; see Fig. 2).

Neglecting internal spatial temperature gradients, the system

energy balance reads

�cV
dT

dt
� q000V ÿ hAS�T ÿ T1�; �4�

which physically represents the increase in thermal energy

storage in the body owing to the absorption of X-rays (internal

heat generation) less the convective heat loss. (All symbols

used in the above lumped-model governing equation are

de®ned in Table 1.) With T = Ti = T1 at t = 0 initial condition,

the temperature history of the thin sample is given by the

simple expression

T�t� ÿ T1 �
q000V
hAS

�1ÿ exp�ÿt=tsys��; �5�

where

tsys � �CpV=hAS �6�

is the representative (dimensional) system time constant for

the lumped body, which depends on the ratio of the thermal

capacitance of the system to the rate of convective heat

transfer. Note that this characteristic time constant for the

convectively cooled but spatially uniform lumped body, tsys,

should not be confused with td, the representative time

describing internal thermal diffusion de®ned earlier in

connection with (3). Finally, note that quick inspection of the

lumped solution (5) reveals that it takes three system time

constants for the body to reach 95% of the ®nal temperature.



The temperature rise as described by (5) is shown plotted in

Fig. 3 for the pertinent physical and experimental parameters

selected for our `thin' sample problem. The beam intensity of

1 � 1013 photons sÿ1 mmÿ2 at 8 keV striking a typical

biosample having a beam attenuation length of Latt = 1000 mm

results in 9.52% total absorption (L* = L/Latt = 0.1), which

translates to _q000V = q = 12.18 mW in the above expression.

Internal heat diffusion, by the de®nition of a lumped system,

occurs so rapidly so as to eliminate all internal gradients

within the sample (actually td = 1.5 ms) and the system time

constant responding to external convection is tsys = 1.5 s. As

shown, the temperature of the sample rises quickly with time

(see temperature history plot) and is always uniform

throughout the sample (i.e. horizontal temperature pro®les).

In just 4.5 s (or three system time constants), the sample nears

its steady-state ®nal temperature, this being 6.09 K above the

ambient gas temperature.

Neglecting convection altogether in the energy balance, i.e.

eliminating the last term in (4), results in a totally different

behavior for the temperature response. Now the temperature

increases linearly with time as described by

T�t� � q000V
�cV

t � Ti; �7�

which is shown plotted in Fig. 4 assuming the same beam

parameters and thermophysical properties as before. Without

convective cooling, the solution predicts that the temperature

will increase inde®nitely without bounds at the constant rate

of 4.1 K sÿ1. This unrealistic prediction shows that convection

is indeed the mechanism responsible for maintaining an

acceptable sample temperature. Finally, the assumption of

spatial uniformity is justi®ed here owing to the small value of

L* = 0.1 (the beam's energy is deposited almost uniformly

throughout the thickness of the sample) and the relatively

short diffusion timescale (milliseconds for diffusion compared

with the experimental time frame of seconds).

The importance of the convection is ampli®ed further in

Fig. 5(a), which shows the effect of the convective ®lm

coef®cient on the resulting thermal behavior. A higher

value of the convective coef®cient (h = 250 W mÿ2 Kÿ1)

results in a substantially lower ®nal steady-state temperature

(Tss ÿ T1 = 2.4 K) and the required time taken to achieve

steady state is also now reduced (note tsys = 0.6 s; Table 2).

The opposite is true as the value of the convection coef®cient

diminishes and at the limit, as h goes to zero, the adiabatic

solution is realised. As mentioned earlier, the exact true value

of the convective ®lm coef®cient is somewhat uncertain

(determination is rather complicated since its value depends

on the ¯uid mechanics and gas properties), but as revealed by

this ®gure its value has a substantial in¯uence on the sample's

temperature.

Next, for our estimated typical (and ®xed) convection

coef®cient, the effect of the beam intensity on the temperature

of the thin sample is illustrated in Fig. 5(b). As expected, as the

intensity increases so does the temperature of the sample;

increasing the photon ¯ux by a factor of ten results in the same

increase in ®nal �T (steady-state temperature minus ambient)

(Table 3). It is interesting to note that the system response

time is unchanged, independent of source intensity, since the

system time constant is ®xed by the sample size, properties and

heat-transfer coef®cient (6).

The shape or more precisely the aspect ratio V/As of the

biocrystal is also known to be very important (Garman &

Schneider, 1997; Garman, 1999) in determining the sample's

temperature if one considers convection. Physically, smaller

values of the V/As ratio implies a larger surface area (relative

to ®xed volume) for convection, thus resulting in more cooling

and hence lower temperatures. In this regard, long thin crys-

tals are preferred over short thick crystals. This shape

dependence is graphically illustrated by the plots reported in

Fig. 5(c). Clearly, smaller values of V/As result in substantially

lower temperatures, as well as a faster response, as evidenced

by the shorter time needed for the temperature to plateau

(less time to steady state). Mathematically, note that this shape

parameter appears twice in the solution to the spatially

uniform thermal model (5), ®rst explicitly as a multiplier in the

coef®cient dictating the magnitude of the temperature level

and then again indirectly as part of the system time constant

term tsys, i.e. see (6), which controls the rate of the transient
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Figure 4
Thermal behavior of a thin insulated biocrystal at low temperature. (a)
Temperature pro®les at selected times, (b) temperatures as a function of
time.

Figure 3
Thermal behavior of a thin cryocooled biocrystal. (a) Temperature
pro®les at selected times, (b) temperatures as a function of time.
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response. Finally note that this aspect-ratio shape dependence

just described cannot be predicted if one invokes the adiabatic

thermal model solution (7), i.e. the rate of the adiabatic

temperature rise dT/dt is independent of V/As (see last column

of Table 4).

In all of the examples discussed thus far, the beam, once

initiated, was left on for a continuous period of time. To

summarize, the system with convective cooling after t > 3tsys

would stabilize at Tss, but if the system was assumed adiabatic

it would continue its linear ramp inde®nitely. The response of

the system after the beam is turned off for the two cases

(convection and adiabatic boundary conditions, respectively)

is shown in Fig. 6. With convection, the sample temperature, as

expected, would fall back down to the gas-stream tempera-

Figure 5
Thermal behavior of a thin cryocooled biocrystal showing (a) the effect of convective ®lm coef®cient, (b) beam intensity and (c) volume-to-surface area
ratio.

Table 2
Effect of corrective ®lm coef®cient.

h (W mÿ2 Kÿ1) Tss ÿ T1 (K) tlumped

25 24.4 6.0
100 6.1 1.5
250 2.4 0.6

Table 3
Effect of beam intensity.

I0 (photons sÿ1 mmÿ2) Tss ÿ T1 (K) dT/dT|t=0 (K sÿ1)

1 � 1013 6.1 4.1
5 � 1013 30.5 20.4
1 � 1014 61 40.8



ture, moreover, at precisely the same rate it took to heat up

(same system time constant) following

T�t� ÿ T1 � �Tmax ÿ T1� exp�ÿt=tsys�; �8�
where Tmax is the last temperature experienced by the sample

prior to beam deactivation. For the adiabatic case, in contrast,

the temperature would remain constant after the removal of

the heat source, ®xed at its very latest value (i.e. generating

horizontal temperature trace) since there is no `thermal

leakage' in the perfectly insulated system.

Let us focus for the moment on the lowest temperature

curve plotted in Fig. 6 (with convection), which shows that

after the beam is turned off the sample subsequently cools;

however, the cooling process begins before the system has had

enough time to reach a steady state. Here �tp < tsys, resulting

in Tmax ÿ T1 = 2.97 K (Table 5). For a much longer pulse

duration (run 2, �tp = 10 s, where now �tp > 3tsys), the system

has plenty of time with respect to the system time constant to

respond so that steady-state behavior prevails over the latter

half of the pulse duration (run 2 of Table 5) and now

T(t)ÿ T1 = 6.08 K = constant. Thus, one concludes, as long as

the pulse duration is `suf®ciently long' the temperature of the

sample at large time (but before the beam is turned off) may be

easily determined from

Tss � T1 �
q000V
hAS

for 3tsys < t < �tp: �9�

This maximum or steady-state temperature of the sample is

obtained by taking the limit in (5) as t becomes very large.

(Note that if the above time restriction is not satis®ed, the

problem is always transient in nature.)

Another very interesting result is obtained from Table 5 by

simultaneously comparing the plots of runs 2±5. Note that the

total energy absorbed in all of these runs is the same. That is,

the sample is exposed to exactly the same number of photons,

namely 1 � 1012 photons, but over a shorter and shorter time

period. (Here, we take the frontal cross-sectional area of the

biocrystal to be Ac = 0.1� 0.1 mm.) A comparison of the plots

reveals that keeping the total thermal loading the same but

experienced over a shorter and shorter time period results

in a signi®cantly elevated maximum sample temperature:

for example, the sample temperature increases from

�Tmax = 6.08 K, if distributed evenly over the 10 s interval, to

as high as 39.44 K, provided the total amount of energy is

delivered very quickly in only 0.1 s. This difference in Tmax is

attributed, of course, to the higher ¯ux level, but note however

that an accurate value for Tmax can only be predicted when

convective cooling is included. The

adiabatic model, on the other hand,

always predicts the same ®nal

maximum temperature as long as the

total thermal load is the same.

As the �t pulse duration decreases

(i.e. less time for convection), we see

that the adiabatic model and the

convective thermal model predictions

clearly approach one another until

®nally the two solutions produce essentially the same result

(compare the adiabatic model and convection results, run 5,

during heating in which �tp = 0.1 << tsys), but disagree totally

thereafter during the cooling phase. This is explained as a

result of the ®nite time required for convection to be felt

(again, of the order of the tsys = 1.5 s).

Extending this last conclusion (i.e. convection and adiabatic

results are identical over very short times) to an even shorter

pulse duration is the basis for the calculation used to produce

Fig. 7. Here again the same number of photons (1 � 1012)

strikes the sample as before, but now in just 100 fs. The

calculation here is very straightforward, is now based upon the

adiabatic thermal model and produces the result as indicated.

The advantage here in dealing with this extremely short time is

that convection can truly be eliminated from the model (over

both the heating event as well as during the `short time'

cooling period). The major problem, however, is that the

solution itself becomes null and void since the governing

equation used to generate this solution breaks down for such a

short time interval (Ozisik & Tzou, 1994). Thermal analysis of

this thin sample in this ultrashort time domain requires a new

and more re®ned mathematical formulation to describe the

thermal energy transport (Kuzay & Kazmierczak, 2001);

accurate and reliable solutions applicable to this time range

are the subject of ongoing research. Suf®ce it to say that the

impetus driving the inquiry into X-ray/biomaterial interaction

at this ultrashort femtosecond timescale is the future X-ray

free-electron laser (FEL) light source and its exciting new

applications. Hence, the solution we report as Fig. 7, albeit
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Table 4
Effect of volume-to-surface area ratio.

Shape
Dimensions
(mm)

V/As

(mm)
Absorption
(%)²

Tss ÿ T1
(K)

td
(ms) Bi

tsys

(s)
dT/dt|t=0

(K sÿ1)

Layer Ac 100 50 9.516 60.9 1.5 0.001 1.5 40.8
Cube 100 � 100 � 100 16.7 9.516 20.3 1.5 0.001 0.5 40.8
Plate 100 � 100 � 10 4.17 0.995 5.31 0.15 0.0001 0.125 42.63

² % X-rays absorbed = [1 ÿ exp(ÿL/Latt)]; dT/dt|t=0 = _Qabs/�cV.

Figure 6
Thermal behavior of a thin cryocooled sample showing the effect of a
single pulse of decreasing duration (but ®xed total load).
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totally erroneous, is presented here mainly for future

comparison.

5. Distributed-model solutions

Suppose now the thickness of the selected crystal is much

larger and L = 1000 mm. The increased depth will result in two

very signi®cant changes: (i) greater X-ray absorption and (ii)

spatial dependence.

In reference to the ®rst concern, the ratio of the sample

thickness L to the attenuation length of X-ray beam Latt in this

case is now L/Latt = L* = 1. Therefore, 63.2% of the energy

striking the sample is now absorbed as it passes through the

sample compared with just 9.52% for the 100 mm thick sample.

This greater absorption implies more internal heating and

therefore higher sample temperatures, but may also simul-

taneously impose signi®cant non-uniformity in the heat-source

distribution. Unlike the thin-sample model, in which the

internal heat generation may be reasonably approximated as

uniform over the sample's depth, the local variation in heat

absorption (i.e. the exponential decay in space) through the

sample must now be considered. Also note that this added

thickness results in additional internal thermal resistance; the

absorbed energy must be conducted a longer distance before it

can be convected away by the external cooling stream. Recall

that the two thermal resistances, as explained earlier, are

brought into perspective relative to each other in terms of the

dimensionless Biot number. For this thick biocrystal, the Biot

number is signi®cantly larger, Bi = 0.208, and now one ®nds

that, as per the thermal regime map (Fig. 2), this necessitates

solving the distributed thermal model in order to obtain an

accurate solution. For transient one-dimensional heat

conduction with exponential decay in internal heat absorption

(in the x direction), the applicable governing equation to solve

is now

@2T

@x2
� q00=�

k
exp�ÿx=�� � �1=�� @T

@t
; �10�

subjected to the convective boundary conditions, formally

stated as

ÿk
@T

@x
�0; t� � h�T1 ÿ T�0; t��

ÿk
@T

@x
�L; t� � h�T�L; t� ÿ T1�: �11�

For the imposed initial condition T = Ti = T1 at t = 0, this

system of equations is readily solved using the method of

separation of variables (Ozisik, 1993) rendering the following

expression for the temperature distribution

T�x; t� ÿ T1 � �Tss�x� ÿ T1� ÿ
q00L

k

� P1
n�1;2;3

���n; x=L�
Nn��n�L

exp�ÿ�2
n�t=L2�

� RL
0

�Tss�x� ÿ T1����n; x=L� dx �12�

in which

Tss�x� ÿ T1 �
q00L

k

�ÿ�
L

exp�ÿx=��

� �h�=k��exp�ÿL=�� ÿ 1� ÿ �exp�ÿL=�� � 1�
2� hL=k

� x

L
� k

hL

� �
� k

hL
� �

L

�
; �13�

where the eigenfunction and normalization integral in (12) are

���n; x=L� � �n cos��nx=L� � �hL=k� sin��nx=L�; �14�

Nn��� �
1

L

RL
0

�2��n; x=L� dx

� 1

2
�2

n �
hL

k

� �2
" #

1� hL=k

�2
n � �hL=k�2

� �
� hL

k

( )
�15�

and where the eigenvalues �n are determined from the

eigencondition

2 cot �n �
�n

hL=k
ÿ hL=k

�n

� �
: �16�

In evaluating this solution, we assumed that the sample is

exposed to the same `typical' beam intensity of 1 � 1013

photons sÿ1 mmÿ2 at 8 keV as before. With the beam

attenuation length of 1000 mm, L* = 1.0 or 63.2% absorption;

this now creates the total of 80.91 mW to be generated within

Figure 7
Erroneous calculation showing the thermal behavior of a thin biocrystal
for extreme heat ¯ux over an ultrashort time using the classical
(adiabatic) heat-transfer model for step source variation.

Table 5
Effect of ®nite pulse duration.

dT/dt|t=0 = _QAbs/�Cv; TAdia ÿ Ti = _QAbs�tp/�Cv = 40.77 K.

I0

(photons sÿ1 mm2)
�tp
(s)

I0Ac�t
(photons) dT/dt|t=0

Tmax ÿ T1
(K)

1 � 1013 1 1 � 1011 4.08 2.97
1 � 1013 10 1 � 1012 4.08 6.08
2 � 1013 5 1 � 1012 8.15 11.75
1 � 1014 1 1 � 1012 40.77 29.72
1 � 1015 0.1 1 � 1012 407.74 39.44



the sample but moreover is distributed non-uniformly

throughout the sample with an exponentially decaying spatial

variation. Note that the thermal properties used in analyzing

this `thick-case' problem are that of water at room tempera-

ture (k = 0.6 W mÿ1 Kÿ1); also, the high heat-transfer coef®-

cient h = 250 W mÿ2 Kÿ1 was assumed. This selection of a

lower k than in the cryocooled case and a higher heat-transfer

coef®cient was made mainly to accentuate the spatial gradi-

ents effects associated with higher Bi numbers.

The thermal response of the thick (L = 1000 mm) air-cooled

biocrystal is plotted in Fig. 8. Just like the lumped-system

model, the temperature of the sample increases rapidly at ®rst,

then slows and then eventually becomes steady with time

when the internal heat generation and the rate of convective

heat loss become equal. According to the temperature traces,

the time it takes to achieve steady-state conditions for the

thick layer is about 60 s compared with just 1.8 s for the thin

sample (Fig. 5a, high h case). (In terms of the dimensionless

regime map, Fig. 2, the Fourier number, given Bi = 0.208,

needs to be greater than Fo = 30 to achieve steady-state

conditions or t = 52 s, since td = L2/� = 1.736 s.) This is much

longer owing to the larger volume and to the additional

internal conductive resistance to overcome. The most striking

difference between the lumped and distributed solutions are

the temperature pro®les (T versus x at select times), which

clearly display the spatial dependence now allowed in the

solution. Hence one sees, at any given instant of time, the

appearance of a peak temperature initially located near the

left wall which then travels toward the center of the sample as

time increases. Owing to the non-uniform heating (i.e. expo-

nential decay in absorption), however, note that the location

of the maximum temperature under steady-state conditions

remains slightly off-center (slightly left of the centerline).

Moving away from Tmax, the temperature then smoothly

decreases towards the walls where the convective cooling is

felt. Under these experimental conditions, the sample's ®nal

sustained peak temperature is Tmax ÿ T1 = 17.94 K

(as opposed to 2.44 K for the thin sample) and the ®nal

(steady-state) largest internal temperature difference is

Tmax ÿ T(L) = 2.19 K.

For the sake of completeness, the distributed model for the

thick sample but for the case of insulated outer walls is

reported in Fig. 9. This solution involves the same governing

equation (10) but the convective BC (11) is replaced with

dT/dx = 0 at x = 0 = L. An exact analytical solution is again

possible using the method of separation of variables, which

results in the following expression

T�x; t� ÿ Ti �
q00=L

k

�
1ÿ exp�L=�� t�

L2

� P1
n�1;2;3

2�L=��2
�L=��2 � n2�2

�1ÿ �ÿ1�n exp�ÿx=���

� 1

n2�2
ÿ exp�ÿn2�2t�=L2�

n2�2

� �
cos�n�x=L�

�
:

�17�

This solution is evaluated (for the same beam conditions as

used in Fig. 8) and produces the representative temperature

pro®les and thermal traces shown in Fig. 9. Here, we see that

the temperature of the sample, without taking into account the

bene®t of convective cooling, will increase with time inde®-

nitely. This is exactly analogous to the results presented in

Fig. 4 for the lumped model, except now the internal heat

conduction is included in the thermal model (via the second-

order space derivative term). The exponentially decreasing

energy absorption causes the temperature near the front

surface of the sample to always be higher in magnitude than

the rear, which eventually reaches (and stabilizes) at around

�T ' 1 K after the `early time' transient adjustment period,

depicted by the spatially changing temperature pro®les, dies

out. Thereafter, the temperatures at all locations `after suf®-
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Figure 8
Thermal behavior of a thick air-cooled biocrystal. (a) Temperature
pro®les at selected times, (b) temperature histories at selected locations.

Figure 9
Thermal behavior of a thick insulated biocrystal. (a) Temperature pro®les
at selected times, (b) temperature histories at selected locations.
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ciently large time' increase linearly with time. (The meaning of

suf®ciently large time, clearly, is with reference to the pure

diffusion time scale of the system, namely td = 1.736 s, since

convection is not present.) It is interesting to note that

although the thick sample is absorbing energy at more than six

times the rate of the thin sample (i.e. 63.21 versus 9.52%), the

adiabatic temperature rise of the thick sample at large time is

actually less (1.9 K sÿ1 versus 4.1 K sÿ1) owing to the tenfold

larger volume and the different thermophysical properties.

Finally, again we wish to emphasize that this adiabatic model

and solutions are not physically correct (except for extremely

short times, as explained earlier in connection with Figs. 6 and

7), but are presented here for completeness. In order to

realistically model the thermal behavior of the thick-layer

system over the time domain encountered in typical

crystallography experiments, the thermal analysis must include

convection.

Now having ®rmly established the fact that convection plays

an indispensable role in determining the temperature distri-

bution of the sample once again, let us explore the effect of the

absorption distribution variation within the sample. Taking the

thick sample, L = 1000 mm, as the test case, we alter the

assumed absorption variation in the distributed model from

the correct exponential decay (curve A, Fig. 10a), to two linear

approximations (lines B and C, both very reasonable ®ts but

involving different endpoints) and ®nally to the totally

incorrect uniform (line D) absorption distribution. Solving the

distributed model with these four different internal heat-

generation variations and focusing at large time only results in

the steady-state temperature pro®les depicted in Fig. 10(b).

Approximating the exponential variation with a linear ®t

produces the correct overall shape (parabolic with slight

asymmetry). However, it overpredicts the magnitude of the

temperature if the linear ®t assumed the same endpoints

(pro®le B) as the exponential decay (owing to higher total

input power), but ®ts the correct solution (pro®le A) almost

exactly (i.e. generates the same pro®le within the plotting

resolution used in the ®gure) if the linear ®t was constrained

so as to give the same total power (pro®le C). The wildly

inaccurate uniform distribution (with same total power),

pro®le D, deviates from the exact result in being perfectly

symmetric about the centerline but gives nearly the same peak

temperature. Finally, note that the steady-state pro®les

themselves become totally independent of the type of the

internal heat-generation variation if the internal heat-

conduction resistance is neglected altogether (i.e. lumped-

model solution) resulting in the very bottom `¯at' pro®le.

Examining the difference between the correct temperature

solution (pro®le A based upon exponential decay) with the

lumped-model solution (i.e. the horizontal line) clearly reveals

the resulting consequence and the extent of the error (at large

time) attributed to the lumped-model simpli®cation (i.e.

negligible spatial dependence) for the case of L* = 1.

It is also instructive to investigate the effect of the

attenuation length Latt on the resulting steady-state

temperature pro®le within the thick-layer problem. Here, the

thickness of the sample and the external ®lm coef®cient are set

to L = 1000 mm and h = 250 W mÿ2 Kÿ1, respectively, and Latt

is varied. The actual value of Latt, of course, depends on the

photon's energy level (i.e. keV) and on the type of material

being investigated, but for illustrative purposes Latt is varied as

50, 1000 and 10 000 mm. (Note that earlier Latt was set at

1000 mm for both the thin and thick test problems, since the

same beam energy level and material type were assumed.) The

®nal steady-state temperature pro®le with exponential decay

in absorption (hence, the correct internal heat-generation

variation is used without any approximation in the remaining

®gure) is described (in dimensionless form) by

���� � ÿ exp�ÿ�L��
L�

� �Bi=L���exp�ÿL�� ÿ 1� ÿ �exp�ÿL�� � 1�
2� Bi

� � 1

Bi

� �
� 1

Bi

� 1

L�
; �18�

Figure 10
Effect of absorption distribution approximation on steady-state tempera-
ture pro®le for L* = 1 and Bi = 0.208. (a) Assumed variation in heat
absorption, (b) resulting steady-state temperature pro®le.



where the dimensionless variables are de®ned as follows

� � T ÿ T1=�q00L=k�; � � x=L; L� � L=Latt; Bi � hL=k:

�19�
The above expression can be obtained by taking the limit as t

goes to in®nity in the distributed solution (12) or by directly

solving the governing equation (10) with the time-derivative

term set equal to zero. The above solution (18) plotted for the

selected values of L* = 20, 1 and 0.1 is shown in Fig. 11(a). The

case of L* = 1 (Latt = 1000 mm), featuring a parabolic

temperature pro®le with slight asymmetry, i.e. peak tempera-

ture shifted slightly toward the left owing to the non-uniform

exponential heating, was thoroughly discussed earlier in

connection with the solution at large time of Fig. 8. The

resulting ®nal temperature pro®le for the system having a

much shorter attenuation length Latt = 50 (L* = 20) is very

different. The peak temperature now occurs near the far left

wall and the temperature then drops in a linear fashion

through the remaining thickness. Note also that the magnitude

of the temperature is signi®cantly higher for L* = 20 versus

L* = 1 owing to the much greater total absorption (i.e. now 100

versus 63.2%). Finally note that, if (18) was plotted for higher

values of L* > 20 (or Latt < 50 mm), all of the pro®les gener-

ated in that case (not shown) would essentially look the same

as the result of the L* = 20 case since all of the energy

absorbed would be deposited in nearly the same manner in the

very thin front surface region. Finally, consider the other

extreme value; here, one observes that for the case with the

very longest attenuation length Latt = 10 000 mm (or L* = 0.1),

the steady-state temperature pro®le tends to appear almost

¯at (with just a slight peak at the centerline) and is least in

value. The low magnitude is readily explained: under this

condition, most of the energy of the X-ray beam passes right

through (just 9.52% of the total energy is absorbed; the same

as in the thin-sample study) and moreover note that of the

energy that is absorbed, it is more or less evenly distributed

throughout the layer (and hence the maximum temperature

occurs at the center).

Finally, the steady-state temperature solution given by (18)

is parametrically exercised one last time, this time ®xing the

dimensionless attenuation length to L* = 1 (typical value for

the thick-sample problem) and the other dimensionless

parameter, the Bi number, in the expression is allowed to

change. Recall that the value of the Bi number can be thought

of as the dimensionless heat-transfer coef®cient (the relative

strength of the convective cooling, keeping L and k constant),

or preferably as the ratio of the internal conduction resistance

to the external convection resistance. From the plots shown in

Fig. 11(b), one observes that as the Bi number increases

the temperature difference within the sample also increases

(that is, relative to the overall temperature difference

�Tmax = Tmax ÿ T1, which includes both internal conduction

and outer convective temperature drops). For example, for

Bi = 0.208 (thick layer test problem), between 5 and 10% of

the total �T occurs within the sample but now accounts for

greater than 40% (55%) for Bi = 2.08 (4.16). This behavior is

perfectly consistent with the physical interpretations and

understanding of Bi number described above. On the other

hand, decreasing the value of the Biot number by a factor of

ten down to Bi = 0.0208 results in smaller (relative) internal

spatial gradients and therefore `¯atter' temperature pro®les

(see the very top pro®le in Fig. 11b). It is important to point

out that this last example just presented provides direct

quantitative justi®cation for the range of validity of the

lumped-model assumption expressed earlier, i.e. as clearly

illustrated a distributed system essentially behaves and thus

can be effectively modeled as a lumped body provided

Bi < 0.02 as delineated in the thermal regime map in Fig. 2.

6. Conclusions

In this paper, the thermal problem associated with the X-ray

beam and biomaterial interaction has been comprehensively

analyzed for the third-generation synchrotron sources. All

interactions can be treated using conventional heat-transfer

formulation. A unique regime map using Fo and Bi as the

running parameters has been developed to identify the
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Figure 11
Effect of (a) L* and (b) Bi number on steady-state temperature pro®le
for the distributed model with exponential heat absorption.
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particular mathematical model (lumped or distributed system)

that should be used along with quantitative criteria that allows

one to check for the steady-state condition. Within this

framework, thin- and thick-sample test cases were carefully

studied and the resulting thermal response, i.e. temperature

distributions as function of time and position, subjected to a

realistic third-generation beam of 8 keV photon energy and at

typical ¯ux levels of 1013 photons mmÿ2 sÿ1 were reported in

detail. For this set of beam parameters the heat-transfer

analysis revealed that the temperature of the thin (100 mm

thick) cryocooled crystal will increase 6 K and would take just

4.5 s to stabilize, whereas the 1 mm thick crystal will take more

than 52 s of constant X-ray exposure before achieving steady

state and the temperature would reach 18 K above the

ambient. Moreover, it was shown that the temperature would

vary signi®cantly across the thick crystal (as much as 2 K),

whereas the temperature gradients within the thin sample

were negligible (i.e. a nearly isothermal crystal).

For the bene®t of the researchers dealing with cryocooled

biosamples and interested in calculating its temperature level

during X-ray exposure, the two types of generalized heat-

transfer solutions were presented in detail. It was shown that

provided certain conditions are satis®ed (i.e. Bi < 0.02 and

Fo > 0.02) the simpli®ed lumped-model solutions are applic-

able, the results of which will be very close to the true solution.

The very simple lumped-model solution revealed and

explained many interesting trends, such as the strong in¯uence

that convection has on the ®nal temperature (and on the rate

of temperature change) and the importance of the volume-to-

surface area ratio. It also provided the characteristic thermal

time constant of the system tsys = �CpV/hAS; by evaluating this

simple expression for tsys (� 3) experimenters now know how

long heating and cooling of very small (nearly isothermal)

crystals take.

More re®ned distributed model solutions were also devel-

oped that took into account internal heat conduction and

spatial dependence and plots were generated that showed the

resulting internal temperature gradients in detail. The extent

of the accompanying elevated internal temperatures was

revealed over a large range of the L* and Bi parameters (at

steady state), allowing the users to decide if the additional

effort and mathematics needed is warranted. The transient

response of the distributed system now also depends on the

rate of internal thermal diffusion. The characteristic timescale

for pure thermal diffusion can be estimated in an order-of-

magnitude sense by td ' L2/� or Fo = 1. Hence, the overall

system time constant for the convectively cooled body with

internal conduction is thus more involved than the lumped

body; the time it takes for a distributed system to reach steady

state is therefore more complicated to express and was given

in graphical form (i.e. curved SS line) in Fig. 2. It was also

revealed that it is the amount of energy deposited and not

necessarily so much the exact distribution of the internal

thermal energy source within the sample that dictates the

maximum temperature.

Finally, irrespective of whether the lumped- or the

distributed-model solutions are ultimately used, it was clearly

shown that convection should always be considered as part of

the analysis at all times (except for extremely short time

periods), although it is noted that the lack of accurate infor-

mation for the convective ®lm coef®cient can be a major

source of uncertainty in the thermal analysis. For complete-

ness and to further emphasize the role of convection, the

results of both convective thermal models were also compared

with the results generated assuming the adiabatic thermal

model, the typical formulation used in all earlier thermal

heating studies.

Overall, the results reported herein have provided a much

better and true understanding of the expected thermal beha-

vior of biocrystals during X-ray heating under a range of

conditions. In closing, we wish to leave the reader with some

general guidelines to help reduce crystal heating during X-ray

exposure. From a pure thermal engineering perspective and

assuming that the beam-energy/¯ux level of the experiment

cannot change, three simple and obvious recommendations

that come to mind supported by this work are as follows: (i)

the thinner the crystal the better, (ii) crystals shapes that

possess higher values of volume-to-surface area ratio are

preferred and (iii) always adjust the cooling-gas ¯ow rate to

provide the highest possible overall heat-transfer ®lm coef®-

cient. The exact impact of each of these suggestions has been

thoroughly quanti®ed during the course of this investigation

and has been shown to be quite dramatic; implementation of

any one strategy could easily cut the total temperature

increase in the sample at least in half. Also note that it is

possible to reduce the maximum temperature of the sample by

carefully adjusting the length of time that the X-ray beam is

on. Speci®cally, if the X-ray exposure duration is made much

shorter than the time it takes for the system to reach thermal

equilibrium, then the temperature of the sample will be less

than the maximum steady-state value Tss (provided one allows

suf®cient time for cooling down between the multiple heating

cycles throughout the entire data-collection process). On the

other hand, note that exposing the sample to much longer

X-ray exposure times will not result in further temperature

increase beyond Tss, which is directly opposite to our prior

understanding of the thermal behavior based upon the earlier

adiabatic thermal model. Lastly, we hope that this study has

adequately equipped the users with enough knowledge in

thermal analysis and modeling capabilities tools so as to allow

the users themselves to easily and accurately calculate the

temperature increases during other experiments run under

different conditions.

APPENDIX A

The exact position of the solid SS curved line (denoting the

minimum dimensionless time the experiment requires for the

system to attain steady state) has been precisely located using

classical heat-transfer theory. In short, it was generated by

smoothly ®tting a line through the steady-state criteria

applicable to three different transient convective heat-transfer

problem types, each valid for a different range of Bi numbers;



namely: (i) those having extremely large Biot numbers,

Bi ! 1, (ii) those with very small Biot numbers, Bi < 0.02,

and (iii) the class of problem having Bi numbers somewhere in

between, 0.02 < Bi < 100 (i.e. moderate values of Bi numbers).

For pure conduction-limited (i.e. Bi!1) but convectively

cooled heat-transfer problems, it can be shown using the

theoretical solutions to the distributed plane layer problem

(Bejan, 1993; Ozisik, 1993) for which h ! 1 (i.e. a case of

sudden change in wall temperature) that the system nears

steady state (about 98% of ®nal values) at about Fo = 0.5.

Thus, the criterion indicating the occurrence of the steady-

state condition for very high Bi number problems is as follows,

if Fo > 0:5 then the system is at SS for Bi!1: �20�
(20) serves as the upper asymptote of the curved SS line

plotted in Fig. 2 (i.e. vertical line at Fo = 0.5, located above the

top of the plot). Again it is important to emphasize that this

steady-state criterion described above applies only to systems

where the cooling is restricted/limited by the rate of internal

heat conduction only, i.e. Bi!1, and hence the extent of the

transient cooling or the degree to which the system nears

steady-state is indicated (in terms of the non-dimensional

time) by the magnitude of the Fo number, the (dimensionless)

heat-diffusion time scale.

With regards to problem category (ii) above, those with

very small Biot numbers (Bi < 0.02) or lumped-type behavior,

that is for convectively cooled system with negligible internal

resistance, the applicable steady-state criterion is totally

different. Instead, the steady-state criterion now reads

if BiFo > 3; then the system is at SS for Bi < 0:02: �21�
The above criterion (21) is easily derived from the fact that the

solution for the temperature, assuming the lumped model,

takes three system time constants for the body to reach 95% of

the ®nal temperature. (21) serves as the lower asymptote for

the curved SS criterion line (i.e. straight line de®ned by

Bi = 3/Fo located in the lower right-hand quadrant or the

lumped-body region of Fig. 2). Note here for this convection-

controlled system that it can be shown that the dimensionless

parameter BiFo physically represents the ratio of the rate of

convective heat transfer to the rate of sensible thermal energy

storage. Thus here, for this case the rate of cooling/heating of

the system depends entirely on the rate of convection (and

amount of sensible thermal energy storage) and the internal

heat conduction is so large by comparison that it plays no role,

relatively speaking, in determining the thermal history of the

sample.

Finally, the time required for the system to effectively reach

a steady state for moderate values of the Bi number (0.02 < Bi

< 100), the region located between the two extremes just

speci®ed (i.e. conduction-limited, convection-controlled

cooling), is a little more complicated than the two limiting

cases since the overall system time response now depends on

both the rate of internal heat diffusion (characterized by Fo)

and also on the rate of convection coupled to the thermal

capacitance of the system, i.e. FoBi. The criterion that indi-

cates the minimum dimensionless time needed to reach steady

state for this range of Bi is graphically represented in Fig. 2 by

the curved line bridging the two limits (20) and (21), respec-

tively. This curve was generated by carefully evaluating the

theoretical (distributed model) solutions for the given range of

Bi numbers using the criteria that the centerline temperature

of system attains at least 90% of its ®nal value and by allowing

the endpoints of this curve to smoothly join the two stated

limits. Functionally, one observes from Fig. 2 that the resultant

curve (denoting the point in dimensionless time where steady-

state behavior ensues) for this Bi number range depends on

both the Fo and Bi numbers in a non-linear fashion.
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